Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501601

RESUMEN

Many successful researchers in the biomedical sciences have benefitted from mentors and networks earlier in their career. However, early-career researchers from minoritized and underrepresented groups do not have the same access to potential mentors and networks as many of their peers. In this article we describe how 'cold emails' and social media platforms - notably Twitter/X and LinkedIn - can be used to build virtual networks, and stress the need to invest in maintaining networks once they have been established.


Asunto(s)
Mentores , Red Social , Humanos , Medios de Comunicación Sociales
2.
J Biomed Mater Res A ; 111(11): 1722-1733, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37326365

RESUMEN

Autologous adipose tissue is commonly used for tissue engraftment for the purposes of soft tissue reconstruction due to its relative abundance in the human body and ease of acquisition using liposuction methods. This has led to the adoption of autologous adipose engraftment procedures that allow for the injection of adipose tissues to be used as a "filler" for correcting cosmetic defects and deformities in soft tissues. However, the clinical use of such methods has several limitations, including high resorption rates and poor cell survivability, which lead to low graft volume retention and inconsistent outcomes. Here, we describe a novel application of milled electrospun poly(lactic-co-glycolic acid) (PLGA) fibers, which can be co-injected with adipose tissue to improve engraftment outcomes. These PLGA fibers had no significant negative impact on the viability of adipocytes in vitro and did not elicit long-term proinflammatory responses in vivo. Furthermore, co-delivery of human adipose tissue with pulverized electrospun PLGA fibers led to significant improvements in reperfusion, vascularity, and retention of graft volume compared to injections of adipose tissue alone. Taken together, the use of milled electrospun fibers to enhance autologous adipose engraftment techniques represents a novel approach for improving upon the shortcomings of such methods.


Asunto(s)
Ácido Poliglicólico , Andamios del Tejido , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Láctico/farmacología , Ingeniería de Tejidos/métodos , Glicoles , Tejido Adiposo
3.
Front Pharmacol ; 13: 881708, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712720

RESUMEN

Background: CD38 is a transmembrane glycoprotein that catabolizes nicotinamide adenine dinucleotide (NAD+) and is the main source for the age-dependent decrease in NAD+ levels. Increased CD38 enzymatic activity has been implicated in several neurological diseases. However, its role in the pathogenesis of cerebral small vessel disease (CSVD) remains unknown. We aimed to characterize CD38 expression and enzymatic activity in the brain of spontaneously hypertensive stroke-prone rats (SHRSP), a genetic model for hypertension and human CSVD, in comparison to age-matched normotensive Wistar Kyoto rats (WKY). Materials and Methods: Age-matched male 7- and 24-week-old WKY and SHRSP were studied. CD38 enzymatic activity was determined in the brain homogenate. Immunohistochemistry and Western Blotting (WB) were used to characterize CD38 expression and localize it in the different cell types within the brain. In addition, expression of nitric oxide synthase (NOS) isoforms and the levels of nitric oxide (NO), superoxide, nicotinamide dinucleotide (phosphate) NAD(P)H were measured the brain of in WKY and SHRSP. Results: CD38 expression and enzymatic activity were increased in SHRSP brains compared to age matched WKY starting at 7 weeks of age. CD38 expression was localized to the endothelial cells, astrocytes, and microglia. We also identified increased CD38 expression using WB with age in SHRSP and WKY. CD38 enzymatic activity was also increased in 24-week SHRSP compared to 7-week SHRSP. In association, we identified evidence of oxidative stress, reduced NO level, reduced NAD(P)H level and endothelial NOS expression in SHRSP compared to age matched WKY. NAD(P)H also decreased with age in WKY and SHRSP. Additionally, activation of astrocytes and microglia were present in SHRSP compared to WKY. Conclusions: CD38 is overexpressed, and its enzymatic activity is increased in SHRSP, a genetic model for marked hypertension and human CSVD. Our results suggest a potential role for CD38 enzymatic activation in the pathogenesis of CSVD and points to the need for future mechanistic and pharmacological studies.

4.
Adv Healthc Mater ; 11(5): e2101619, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34662497

RESUMEN

Extracellular vesicles (EVs) have emerged as a promising carrier system for the delivery of therapeutic payloads in multiple disease models, including cancer. However, effective targeting of EVs to cancerous tissue remains a challenge. Here, it is shown that nonviral transfection of myeloid-derived suppressor cells (MDSCs) can be leveraged to drive targeted release of engineered EVs that can modulate transfer and overexpression of therapeutic anticancer genes in tumor cells and tissue. MDSCs are immature immune cells that exhibit enhanced tropism toward tumor tissue and play a role in modulating tumor progression. Current MDSC research has been mostly focused on mitigating immunosuppression in the tumor niche; however, the tumor homing abilities of these cells present untapped potential to deliver EV therapeutics directly to cancerous tissue. In vivo and ex vivo studies with murine models of breast cancer show that nonviral transfection of MDSCs does not hinder their ability to home to cancerous tissue. Moreover, transfected MDSCs can release engineered EVs and mediate antitumoral responses via paracrine signaling, including decreased invasion/metastatic activity and increased apoptosis/necrosis. Altogether, these findings indicate that MDSCs can be a powerful tool for the deployment of EV-based therapeutics to tumor tissue.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Células Supresoras de Origen Mieloide , Animales , Neoplasias de la Mama/terapia , Femenino , Humanos , Ratones , Microambiente Tumoral
5.
Sci Adv ; 7(12)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33741587

RESUMEN

Ischemic stroke causes vascular and neuronal tissue deficiencies that could lead to substantial functional impairment and/or death. Although progenitor-based vasculogenic cell therapies have shown promise as a potential rescue strategy following ischemic stroke, current approaches face major hurdles. Here, we used fibroblasts nanotransfected with Etv2, Foxc2, and Fli1 (EFF) to drive reprogramming-based vasculogenesis, intracranially, as a potential therapy for ischemic stroke. Perfusion analyses suggest that intracranial delivery of EFF-nanotransfected fibroblasts led to a dose-dependent increase in perfusion 14 days after injection. MRI and behavioral tests revealed ~70% infarct resolution and up to ~90% motor recovery for mice treated with EFF-nanotransfected fibroblasts. Immunohistological analysis confirmed increases in vascularity and neuronal cellularity, as well as reduced glial scar formation in response to treatment with EFF-nanotransfected fibroblasts. Together, our results suggest that vasculogenic cell therapies based on nanotransfection-driven (i.e., nonviral) cellular reprogramming represent a promising strategy for the treatment of ischemic stroke.


Asunto(s)
Reprogramación Celular , Accidente Cerebrovascular Isquémico , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Accidente Cerebrovascular Isquémico/terapia , Ratones
6.
Cell Mol Bioeng ; 13(5): 435-446, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33184576

RESUMEN

BACKGROUND: Tissue ischemia contributes to necrosis and infection. While angiogenic cell therapies have emerged as a promising strategy against ischemia, current approaches to cell therapies face multiple hurdles. Recent advances in nuclear reprogramming could potentially overcome some of these limitations. However, under severely ischemic conditions necrosis could outpace reprogramming-based repair. As such, adjunctive measures are required to maintain a minimum level of tissue viability/activity for optimal response to restorative interventions. METHODS: Here we explored the combined use of polymerized hemoglobin (PolyHb)-based oxygen nanocarriers with Tissue Nano-Transfection (TNT)-driven restoration to develop tissue preservation/repair strategies that could potentially be used as a first line of care. Random-pattern cutaneous flaps were created in a mouse model of ischemic injury. PolyHbs with high and low oxygen affinity were synthesized and injected into the tissue flap at various timepoints of ischemic injury. The degree of tissue preservation was evaluated in terms of perfusion, oxygenation, and resulting necrosis. TNT was then used to deploy reprogramming-based vasculogenic cell therapies to the flaps via nanochannels. Reprogramming/repair outcomes were evaluated in terms of vascularity and necrosis. RESULTS: Flaps treated with PolyHbs exhibited a gradual decrease in necrosis as a function of time-to-intervention, with low oxygen affinity PolyHb showing the best outcomes. TNT-based intervention of the flap in combination with PolyHb successfully curtailed advanced necrosis compared to flaps treated with only PolyHb or TNT alone. CONCLUSIONS: These results indicate that PolyHb and TNT technologies could potentially be synergistically deployed and used as early intervention measures to combat severe tissue ischemia.

7.
Adv Biosyst ; 4(11): e2000157, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32939985

RESUMEN

While gene and cell therapies have emerged as promising treatment strategies for various neurological conditions, heavy reliance on viral vectors can hamper widespread clinical implementation. Here, the use of tissue nanotransfection as a platform nanotechnology to drive nonviral gene delivery to nerve tissue via nanochannels, in an effective, controlled, and benign manner is explored. TNT facilitates plasmid DNA delivery to the sciatic nerve of mice in a voltage-dependent manner. Compared to standard bulk electroporation (BEP), impairment in toe-spread and pinprick response is not caused by TNT, and has limited to no impact on electrophysiological parameters. BEP, however, induces significant nerve damage and increases macrophage immunoreactivity. TNT is subsequently used to deliver vasculogenic cell therapies to crushed nerves via delivery of reprogramming factor genes Etv2, Foxc2, and Fli1 (EFF). The results indicate the TNT-based delivery of EFF in a sciatic nerve crush model leads to increased vascularity, reduced macrophage infiltration, and improved recovery in electrophysiological parameters compared to crushed nerves that are TNT-treated with sham/empty plasmids. Altogether, the results indicate that TNT can be a powerful platform nanotechnology for localized nonviral gene delivery to nerve tissue, in vivo, and the deployment of reprogramming-based cell therapies for nerve repair/regeneration.


Asunto(s)
Electroporación/métodos , Técnicas de Transferencia de Gen , Nanomedicina/métodos , Nanoestructuras , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Traumatismos de los Nervios Periféricos/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...